Bihemispheric transcranial direct current stimulation enhances effector-independent representations of motor synergy and sequence learning.
نویسندگان
چکیده
Complex manual tasks-everything from buttoning up a shirt to playing the piano-fundamentally involve two components: (1) generating specific patterns of muscle activity (here, termed "synergies"); and (2) stringing these into purposeful sequences. Although transcranial direct current stimulation (tDCS) of the primary motor cortex (M1) has been found to increase the learning of motor sequences, it is unknown whether it can similarly facilitate motor synergy learning. Here, we determined the effects of tDCS on the learning of motor synergies using a novel hand configuration task that required the production of difficult muscular activation patterns. Bihemispheric tDCS was applied to M1 of healthy, right-handed human participants during 4 d of repetitive left-hand configuration training in a double-blind design. tDCS augmented synergy learning, leading subsequently to faster and more synchronized execution. This effect persisted for at least 4 weeks after training. Qualitatively similar tDCS-associated improvements occurred during training of finger sequences in a separate subject cohort. We additionally determined whether tDCS only improved the acquisition of motor memories for specific synergies/sequences or whether it also facilitated more general parts of the motor representations, which could be transferred to novel movements. Critically, we observed that tDCS effects generalized to untrained hand configurations and untrained finger sequences (i.e., were nonspecific), as well as to the untrained hand (i.e., were effector-independent). Hence, bihemispheric tDCS may be a promising adjunct to neurorehabilitative training regimes, in which broad transfer to everyday tasks is highly desirable.
منابع مشابه
Cooperation Not Competition: Bihemispheric tDCS and fMRI Show Role for Ipsilateral Hemisphere in Motor Learning
What is the role of ipsilateral motor and premotor areas in motor learning? One view is that ipsilateral activity suppresses contralateral motor cortex and, accordingly, that inhibiting ipsilateral regions can improve motor learning. Alternatively, the ipsilateral motor cortex may play an active role in the control and/or learning of unilateral hand movements. We approached this question by app...
متن کاملThe effect of transcranial direct current stimulation on motor sequence learning and upper limb function after stroke
OBJECTIVE To assess the impact of electrode arrangement on the efficacy of tDCS in stroke survivors and determine whether changes in transcallosal inhibition (TCI) underlie improvements. METHODS 24 stroke survivors (3-124months post-stroke) with upper limb impairment participated. They received blinded tDCS during a motor sequence learning task, requiring the paretic arm to direct a cursor to...
متن کاملNon-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance
During the past .. years, non-invasive .rain stimulation has .ecome an emerging .eld in clinical neuroscience due to its capability to transiently modulate corticospinal excitability, motor and cognitive functions. .hereas transcranial magnetic stimulation has .een used e.tensively since more than t.o decades ago as a potential .neuromodulator., transcranial current stimulation .tCS. has more r...
متن کاملCOMPARISON OF THE EFFECTIVENESS OF TWO METHODS OF TRANSCRANIAL DIRECT CURRENT STIMULATION (T-DCS) AND PLAY THERAPY ON ATTENTION AND PSYCHO-MOTOR FUNCTION OF CHILDREN WITH LEARNING DISABILITIES: A SEMI-EXPERIMENTAL DESIGN
Background & Aims: Learning disorder is one of the most common neuro-developmental disabilities in childhood that requires effective interventions.The aim of this study was to compare the effect of tDCS and play therapy on improving attention and psycho-motor function in children with learning disorder. Matherials & Methods: The present study was a semi-experimental (pre-test and post-test des...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 3 شماره
صفحات -
تاریخ انتشار 2014